
1
SENIOR DESIGN PROJECT 2017, TEAM19, MIDYEAR DESIGN REVIEW

 QuickTab
Midyear Design Review

Joseph Biegaj, EE, John Bonk, EE, Lindsay Manning,
EE, and Jacob Prescott, EE

Abstract— QuickTab is a system that enables guitarists to
produce tablature, a common form of musical notation that
indicates finger position rather than pitch. QuickTab determines
these finger positions based on the mechanical vibrations
detected in the strings and body of the guitar.

I. INTRODUCTION

TABLATURE is an alternative form of representing music for
stringed instruments which simplifies the confusing notation
associated with traditional sheet music into an easy and
intuitive format that is perfect for beginners and experienced
musicians alike. Unfortunately, the existing software that sets
the convention for generating tablature, Guitar Pro[1], is both
expensive and time consuming to learn. With QuickTab we
eliminate both the need for expensive software and an arduous
transcription process.
 QuickTab allows the user to generate tablature by simply
playing the desired musical phrase on a guitar. Designed to be
lightweight and unobtrusive, QuickTab attaches onto the base
of the guitar by the bridge. A User Interface enables the user
to calibrate the device to the guitar’s specific tuning as well as
dictate the beginning and ending of the recording. QuickTab
is designed to provide more accessibility and ease of use to the
tablature creation process.
 As a commercial tool, QuickTab is ideal for guitar
instructors who want to give their students something to take
home and practice after the lesson. By using QuickTab they
will be able to efficiently create customized lessons for their
students, allowing them to zero in on that particular student's
areas of difficulty, resulting in more effective teaching.
 QuickTab would also be incredibly impactful on the
musically community as a whole. Services like Songsterr[2],
which hosts an interactive, online repository of tab which
anyone can add to or learn from, would benefit greatly from a
product like this, as simplified tablature generation enables
more people to contribute to the database, increasing the
availability and quality of tab. The use of QuickTab heralds
growth in the musical community as it provides users who

J. Biegaj from East Hampton, CT (E-Mail: jbiegaj@umass,.edu)
J. Bonk from Northborough, MA (E-Mail: jbonk@umass.edu)
L. Manning from Hopkinton, MA (E-Mail: lmanning@umass.edu)
J. Prescott from Mashpee, MA (E-Mail: jprescott@umass.edu)
might have been discouraged from learning guitar, due to the
cost of buying music or a lack of musical education, with
ready accessibility to a comprehensive library of tablature; the

comparatively cheap and easy way to learn guitar.
 So far there are no products in the market that can
accomplish what we are trying to do. However several
attempts have been made, the most recent and most like ours
is AutoTabber from SDP15. Team AutoTabber attempted to
use six hexaphonic pickups to capture the signal off each
string which would then be fed into a microcontroller where
the frequency spectrum would be used to determine the fret
that was played on the string [3]. Another example comes
from the German company M3i technologies, their laser pitch
detector used lasers coming from the bridge of the guitar to
determine the length of the string being played and thus the
fret being pushed [4], It was set for commercial release in
2012 however like team AutoTabber it was ultimately
unsuccessful.
 What makes QuickTab different is how we are generating
our signal, AutoTabber used pickups, M3i Technologies used
lasers and QuickTab uses a single accelerometer, which senses
the vibrations of the guitar as a note is played giving us a
cleaner signal to work with and ultimately making it possible
to generate the tablature we desire.

Specification Value
ADXL345
Weight 1.27g
Height 3.14mm
Length 25mm
Width 19mm
Power Usage 75.9 W (Active)

0.25 W (Standby)
Raspberry Pi
Weight 45g
Height 10mm
Length 85.6mm
Width 56.6mm
Power Usage 4W

 Table 1: Project Specifications

 The specifications given in Table 1 show that the
electronics attached to the guitar will be lightweight and
relatively small, accomplishing one of our goals for the project
to be sufficiently small and lightweight so that when it is
attached to the bottom of a guitar it will not be to cumbersome
for the user. Power consumption is not issue at the moment
because we are not using our own power supply. As a stretch

2
SENIOR DESIGN PROJECT 2017, TEAM19, MIDYEAR DESIGN REVIEW

goal we have discussed using a power supply we design
ourselves which would mean again taking weight
considerations into account as well as power usage by the
device.

II. DESIGN
A. Overview
 Our project consists of five main blocks: sensors, user
interface, data logging, signal processing, and tab compiler.
Each of these pieces is required for our project to be fully
complete.
 Before we go over each of the blocks in detail, we
summarize the main functions of our system. When the user
decides to create tablature, they power on the QuickTab and
start/stop the recording using the user interface. As soon as
they begin to strum the guitar, the sensors register activity and
transmit their data to the Raspberry Pi. After recording the
user’s inputs on the guitar, a file is created by the Pi and is
then transferred to our signal processing block where the data
is parsed and analyzed using Short Term Fourier Transforms
and logical comparators. Once the frequencies have been
identified, the entire recording is turned into tablature and
available to view.

 Fig. 1: Block Diagram
B. Sensors

The purpose of the sensors is to measure the mechanical
vibrations of a guitar body and to detect when a string is used.
Only a single accelerometer is required to measure the
cumulative frequency of the guitar body at a given instance.
The complex waveform output can then be broken down via
Fourier transforms where individual Fourier components can
be identified. Vibration sensors on the strings are designed to
detect when a string is plucked. The vibration sensors must

provide an impulsive output when the string is initially played.
With the data received from the digital accelerometer and the
vibration sensors, the information required to determine hand
position is secured.

 1) Accelerometer:
 QuickTab utilizes a MEMS accelerometer to measure the
vibration of the a guitar’s body. The ADXL345[5] 3-axis
digital accelerometer from Analog Devices measures the static
acceleration of gravity, as well as, dynamic acceleration
resulting from motion or shock. The device has a selectable
measurement range of ±2 g, ±4 g, ±8 g, or ±16 g for each axis
of the accelerometer; X, Y, and Z. Higher ranges allow for the
tracking of high speed movements (i.e. vibrations). The
device has an adjustable transfer rate up to 3.2kHz, which is
suitable for our design since the guitar produces frequencies
up to approximately 1kHz. The 32-level FIFO buffer allows
the ADXL345 to store data this data to be read out at the user's
discretion. The ADXL345 is surface mounted on a pre-
assembled breakout board distributed by Adafruit. The

package is positioned at the bridge of the guitar and oriented
with the z-axis perpendicular to the strings. Our next steps
regarding

the ADXL345 include refining the position of the device and
its attachment to the guitar.

2) Vibration Sensors:
 The next step for data acquisition is to determine what

string is being used when a note is played. To attain this

3
SENIOR DESIGN PROJECT 2017, TEAM19, MIDYEAR DESIGN REVIEW

information, vibration sensors will be placed on each string.
A SignalQuest SQ-MIN-200[6] is a small, lightweight, and
omnidirectional vibration microsensor, which could be placed
directly on a guitar string without interfering with the sound
quality of the instrument. By attaching the sensors closer to
the bridge, vibrations from surrounding strings will have less
of an effect on an individual sensor.

Successful implementation of the sensors will be confirmed
when the result of a single string being plucked is a single
voltage spike on a computer generated graph. Next steps
include physically attaching a sensor to a string and recording
how much interference is received from other sources of
vibration. The data received after attachment will determine if
the SQ-MIN-200 is a suitable component for the system. The
data from the vibration sensor should be in the form of an
impulse. To achieve an impulsive output further signal
processing must be implemented. In this form, the string used
at a specific time can be recorded.
C. User Interface
 The User Interface(UI) is an essential part of project
QuickTab, allowing the user to control recording, calibration,
and power, all with audible feedback. A custom PCB
designed in EagleCAD will be used to implement this portion
of the project, consisting of a series of buttons and a speaker.
More specifically, it will require buttons for Start/Stop, Power
On/Off, Calibrate, and a speaker to provide user feedback.
The UI, containing the Raspberry Pi, buttons and speaker, will
be placed at the bottom edge of the guitar, as illustrated inside
the red box of Fig. 2. In order to implement the interface, we
will draw from our circuits and electronics classes. The
design for the buttons and speaker setup will be especially
influenced by this past experience. Coding experience from
our computer systems lab and data structures class will also be
useful for this portion because the UI will need to be
connected to the GPIO of the Raspberry Pi and control the
running of scripts. Interrupts in C/Python are a keystone of
this block and will need to be learned to ensure proper
functionality of the buttons on the UI in coordination with the
code for recording.
 A test that can be done to prove functionality is to link
several buttons to the Raspberry Pi and create a small test code
that will print out “X button has been hit” upon button press.
After implementation with the code used for recording data
from the accelerometer, we will have visible verification that
these interrupts are correctly triggered by their corresponding
buttons. Another experiment is to take an oscilloscope and
verify that when a button is pressed that a pulse is sent through
the Raspberry Pi GPIO, verifying that

 Fig 2: Implementation of the User Interface

the interrupt code will be able to trigger on a rising-edge. If
the first experiment does not work and the sample code is
having difficulty triggering an interrupt, then we will use the
oscilloscope experiment to verify that a rising-edge is sent. If
the interrupts are still not being triggered correctly, then there
is something wrong on the coding side of the implementation.
The UI should be a smooth, intuitive system that ensures
functionality and interactivity for the project.
D. Data Logging

In order to reconstruct the guitarist’s performance in
tablature form, the signals received from the accelerometer

4
SENIOR DESIGN PROJECT 2017, TEAM19, MIDYEAR DESIGN REVIEW

and vibration sensors are recorded by a Raspberry Pi that

accurately stores and organizes the data without missing any
data points. Specifically, the method by which the data is
collected must adhere to a few functional requirements. First
and foremost, the data emitted by the ADXL345 must be
collected by the Pi at the same sampling rate in order to
accurately interpret every note played on the guitar.
Additionally, the data collected from the accelerometer and
vibration sensors must be aligned in the file with regard to
time such that the code for generating tablature will have data
for determining the frequency and string plucked as well as a
timestamp that indicates that these two measurements are
correlated and should work together to a new note on our
tablature. The precise mechanism by which new notes will be
added to the tablature will be discussed in Section F.

In order to properly collect and organize the received
signals, we will be building upon the fundamentals that we
learned in Data Structures & Analysis as well as any other

basic programming courses we have taken. Because our code
utilizes Python, we must familiarize ourselves with the
libraries available for data collection, as well as compiler
differences such as an inability to explicitly set the clock rate.

While software is the bulk of this technical block, it is
important to consider the intrinsic link between hardware and
software. Drawing from our experiences in Computer
Systems Lab, we must manually configure our GPIO to
operate under the parameters we give it and ensure that only
digital signals are sent to the Raspberry Pi, as it does not
support analog inputs without analog-to-digital conversion.

In order to ensure full functionality, this block requires
three tests. Firstly, the ability of the Pi to collect samples at
the same rate as they are emitted by the ADXL345 must be
tested by recording samples of notes played at up to 1600Hz.
If samples of these high frequency notes can be accurately
recorded and converted to the proper frequency in the Matlab
code, then the Pi must be working at the correct sampling rate
of the ADXL345. Otherwise, we would not be sampling at the
Nyquist Rate and would be unable to retrieve the correct
frequencies.

Secondly, the vibration sensor data must be precisely
logged with respect to time. We can verify accuracy by
playing multiple notes with specific time delays between them
and observing the spikes in our received signals for
confirmation that these time delays are of the same duration.

Our third and final test brings the first two components
together. In order to verify that both sensors are aligned, we
must view their data side by side and ensure that the spikes in
both sets of data occur at the same time. These three tests
together will ensure the accuracy of our data logging both
individually and collectively.
E. Signal Processing

After the data has been recorded by the Raspberry Pi it is
off loaded to a PC where it is processed and the correct
frequency is determined. Currently we are using MATLAB
for our signal processing needs but as we refine and hone our
code down to its final form we would like to switch over to a
free software that would make our product far more available
to the average person.

 Fig.3: Raw ADXL345 Output of A3 Being Played

Fig. 3 shows data that is sent from the data logging stage to
be utilized by the MATLAB code. First the data is sent
through a number of bandpass filters, we do this to remove
any extraneous noise and to eliminate any frequencies that
cannot appear on the string being played, which we determine
via the data gathered from the vibration sensors described in
section II-B. This helps to refine the FFT as well as make it
easier for the logical statements, which will be discussed later,
to determine which note is being played.

Next we perform FFT’s on the data that are 500 points wide
and spaced 250 points apart. This overlap is to ensure that we
do not miss any notes that happen to be in between the 500
point samples that we are taking. Fig. 4 shows the output after
an FFT is taken.

 Fig. 4: FFT Showing Note A3 (220Hz)

After each FFT is taken we send the data through a series of

5
SENIOR DESIGN PROJECT 2017, TEAM19, MIDYEAR DESIGN REVIEW

logical statements, using the function find peaks in order to
determine the maximum spikes and from there determine the
frequency of the notes that are being played. This process is
repeated for the duration of the signal. Fig. 5 shows a
MATLAB printout of this stage, after 5 FFTs are taken.

 Fig 5: Printout for the Above Signal, Displaying Frequency

F. TAB Compiler

The TAB Compiler is responsible for taking the data
received from the signal processing and creating readable
tablature. To achieve this, (1) will be used to determine the
fret played at given instance. The first necessary component to
produce accurate tablature is the frequency of the open strings.
This data is obtained when the user calibrates the device.
Calibration is important because even if the instrument is
slightly out of tune, the fret can still be determined. Then, the
string that was used when the note was played needs to be
confirmed. If the string can be identified, then the compiler
can determine what open string frequency to use in (1). The
next step would be to take the frequency determined via the
signal processing method to calculate the number of semitones
(n) that separate the note of the open string and the note
played. Because each adjacent fret difference is exactly one
semitone, we can determine the fret being played as equal to n.

 (1)

 Tablature, such as the example depicted in Fig. 5, uses
lines and numbers to represent the six guitar strings and the
frets used to create a note. To reproduce this form, arrays that
correspond to each of the six strings will be filed with n values
in the order that they occurred in. The values will be printed
in the form seen in Fig. 5. The TAB Compiler will be
completely implemented when the system is able to determine
what string is used when a frequency is measured. The output
of the TAB Compiler is the final product of the QuickTab.

 Fig.6: An Example of Tablature

III. PROJECT MANAGEMENT

MDR Deliverable Status
Identify 10 notes on one string with 90%
accuracy

Complete

Verify that latency is sufficiently low so that
we can record notes and rhythms within
100ms of being played

Not needed

 Table 2: MDR Deliverables

We marked the first deliverable from Table 2 as Complete

because we can record and identify 10 notes on one string with
100% accuracy, identify two notes played at the same time on
two different strings, and identify three notes played in quick
succession on one string. Not only does this indicate end to
end functionality of our system, it also demonstrates the
individual successes of our subsystems. We accurately collect
data that we can parse to determine note frequency and the
beginning of each note. During the course of our work we
determined that our second deliverable was not going to be
necessary as when the deliverables were written we were not
sure if we were going to be doing the tablature conversion in
real time. If we did the conversion in real time, the
deliverable would have been relevant.

So far, Team QuickTab has been able to successfully record
data from the accelerometer attached to the base of the guitar,
take that data and analyze it in MATLAB using FFTs to
determine the frequencies played. We have done several
different types of tests to show these accomplishments. These
tests included: playing notes simultaneously to prove that we
would be able to detect both frequencies, playing notes in
quick succession to illustrate that there is the FFTs will be able
to detect each of these frequencies, and finally playing every
other note on one string to show that we can determine the
correct frequency for an entire string.

Even with this progress, there is still much to be done. The
User Interface and TAB Compiler must be created, the
sampling rate must be corrected for the Data Logging,
MATLAB must be expanded to incorporate all six strings, and
the vibration sensors must be attached to the guitar and
embedded into the system. The User Interface and its custom
PCB will be designed and implemented to work in
coordination with the Raspberry Pi to give the user control
over power, recording, and calibration. The TAB Compiler
will take suggested frequencies and vibration sensor data to
match correlating vibrations and frequencies to give a print out
of what was played on a Tablature sheet. Data logging will
need adjustment because the sample rate does not give enough
bandwidth to be able to support the frequency range of an
entire guitar. The MATLAB will need to be modified to
support determining the frequency on any string without
knowing which is being played beforehand. Vibration sensors

6
SENIOR DESIGN PROJECT 2017, TEAM19, MIDYEAR DESIGN REVIEW

will be placed onto the strings and implemented into the
project to identify when a string is played to correctly
determine the string a given frequency was played on.

Each group member brings a set of skills to the group;
Jacob and Joe both have extensive experience with both

coding and the guitar, while Lindsay and John have
experience with coding and the hardware components used in
the project. Together these skills allow us to create a working
project, from end-to-end. We feel that our team has been
working well with each other, and we understand that this is a
group effort and that we should communicate what we are
working on, what we are having problems on and the progress
each of us has made. We have weekly meetings with our
advisor to convene and talk about progress made, solutions to
problems, and our goals for the week. This helps us keep on
top of things, stay informed of others’ progress, and refocus
our efforts towards critical tasks that must be completed.

From PDR to MDR, our primary goal was getting accurate
data from the accelerometer that could be analyzed using
MATLAB. Each of us helped on the python code and the
accelerometer setup, and the MATLAB coding was
spearheaded by Jacob and Joe with the assistance of Lindsay
and John. This was the most crucial part of the project and
also a prerequisite into other parts, which is why we worked
together mostly because we could not split up the project until
this was complete.

IV. CONCLUSION
Currently, we have implemented hardware on our guitar

that allows us to retrieve the signals played on one string from
the lowest to highest fret. We can also view two notes played
at the same time on different strings.

As identifying the correct notes played on a guitar is
believed to be the most difficult part of our project, we believe
that we are in a good position to complete our project by
April. The main components that are still required in our
project are a user interface with functional interrupts, a
method to detect the string being played, and a print out of our

tablature.
We have gotten the note identification to an accurate state

for frequencies up to 500Hz. Our first objective is to
overcome that drawback by matching the sample rates of the
Pi and ADXL345. Next, we will identify the string being

played with our vibration sensors. At that point, the biggest
task is to verify that our tablature printout is accurate. Once
we have a working system, the user interface will allow us to
easily demo and present our finished project. At that point in
the project, we will be proud to present QuickTab as the first
successful ‘performance to tablature’ system for any guitar
that UMass has ever seen.

Our project was ambitious from the start, but we are proud
of the progress we have made and have plans of attack for
eliminating the issues in our system. We look forward to
succeeding where all others have failed.

 ACKNOWLEDGMENT
We would like to thank Professor Kelly for his guidance

and support. We would also like to thank our evaluators
Professor Bardin and Professor Kundu for their invaluable
feedback.

 Fig.7: Gantt Chart

REFERENCES

[1] G. P. 6, "Guitar pro 6 - Tablature software for guitar, bass, and other
fretted instruments,". [Online]. Available: https://www.guitar-
pro.com/en/index.php.

[2] "Guitar tabs with rhythm," Songsterr Tabs with Rhythm, 2017. [Online].
Available: https://www.songsterr.com/.

[3] T. Alsagoff, M. Murphy, M. Shtilman-Minkin and M. Wojick,
"AutoTabber: A Frustration-Free Guitar Tabbing System", 2014.

[4] P. Ridden, "System uses lasers to detect the pitch of a guitar string
before a note is played", Newatlas.com, 2011. [Online]. Available:
http://newatlas.com/laser-system-detects-guitar-string-pitch/19278/.
[Accessed: 21- Dec- 2016].

7
SENIOR DESIGN PROJECT 2017, TEAM19, MIDYEAR DESIGN REVIEW

[5] Analog Devices, "3-Axis, ±2 g/±4 g/±8 g/±16 g Digital Accelerometer,"
in Analog Devices. [Online]. Available:
http://www.analog.com/media/en/technical-documentation/data-
sheets/ADXL345.pdf. Accessed: Dec. 21, 2016.

[6] "SQ-MIN-200 NANO-POWER TILT AND VIBRATION SENSOR," in
SignalQuest, 2014. [Online]. Available:
https://signalquest.com/download/Tilt%20and%20Vibration%20Sensor
%20SQ-MIN-200.pdf. Accessed: Dec. 22, 2016.

